If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7g^2-39g=0
a = 7; b = -39; c = 0;
Δ = b2-4ac
Δ = -392-4·7·0
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-39}{2*7}=\frac{0}{14} =0 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+39}{2*7}=\frac{78}{14} =5+4/7 $
| -x+3(6x+21)=12 | | 4v^2-20v-11=0 | | m/5=1.9 | | 4y^2+20y-11=0 | | F(x)=3x²-5x-6 | | 25/100=40/x | | 4r-r=-6-2 | | 9*n=-18 | | 11d+10=16 | | (1/3)x=27x-4 | | 60/100=x/69.80 | | 2u^2-13u-15=0 | | -15x-10=-12x+5 | | 5(2a-1)=19 | | 0.17+0.09(14,000-x)=2000 | | 12x+10=-3-10 | | 13+3-8x=8 | | 5a(a+4)=# | | 4x~32=0 | | 10q^2+23q=0 | | 1/6=3+x | | 8x+3=4x-14 | | 12b-9=2b-b=-87 | | 3v^2+26v-9=0 | | 3x^+42x+147=0 | | (D²-2D+4)y=0 | | 180=(x+4)+(7x) | | 4/5m-4=-9/10m+1 | | 3^2x+2-5(3^x)=0 | | 13-4x=(-11) | | 1/2x+2=5/2x | | 2n÷11+8=10 |